Solve the following system:

$$
\begin{aligned}
& y=\sqrt{x-5} \\
& y=-5 x+7 \\
& x-5=-5 x+7 \\
&+5 x \\
&+8 x \\
& 6 x-5=7 \quad x=2 \\
& 6 x=12
\end{aligned}
$$

Dilations

Dilations - Making an object larger or smaller

$\triangle A B C$ with vertices $A(-1,0), B(4,2)$, and $C(2,6)$ is transformed by the ordered pair rule $(x, y) \rightarrow(3 x, y-6)$ creating the image, $\Delta A^{\prime} B^{\prime} C^{\prime}$.
a. Graph the image of $\triangle A B C$ and label it $\triangle A^{\prime} B^{\prime} C^{\prime}$
$A^{\prime}(-3,-6) B^{\prime}(12,-4) \quad C^{\prime}(6,0)$
c. Is it a rigid transformation? Is $\triangle A B C \cong \triangle A^{\prime} B^{\prime} C^{\prime}$?
d. What appeared to happen?

$\triangle A B C$ with vertices $A(-6,-6), B(12,-4)$, and $C(4,8)$ is transformed by the ordered pair rule $(x, y) \rightarrow\left(\frac{1}{2} x, \frac{1}{2} y\right)$ creating the image $\Delta A^{\prime} B^{\prime} C^{\prime}$.
a. Graph the image of $\triangle A B C$ and label it $\triangle A^{\prime} B^{\prime} C^{\prime}$
$A^{\prime}(-3,-3)$
$B^{\prime}(6,-2)$
c. Is it a rigid transformation? Is $\triangle A B C \cong \Delta A^{\prime} B^{\prime} C^{\prime}$?
d. What appeared to happen?

Dilation - Non rigid transformation
 $$
(x, y) \longrightarrow(r x, r y)
$$

Scale factor - the amount of increase or decrease in size. (r) Enlargement $-r$ is greater than 1

Reduction - r is less than 1

